Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-{4-Bromo-2-[(*S*)-menthyloxy]-5-oxo-2,5-dihydro-3-furyl}-L-valine

Xiu-Mei Song, Zhao-Yang Li, Zhao-Yang Wang* and Jian-Hua Fu

School of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: wangwangzhaoyang@tom.com

Received 13 June 2009; accepted 5 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.040; wR factor = 0.085; data-to-parameter ratio = 16.0.

The title compound, $C_{19}H_{30}BrNO_5$, was obtained *via* a tandem asymmetric Michael addition–elimination reaction of 3,4dibromo-5-[(*S*)-L-menthyloxy]furan-2(5*H*)-one and L-valine in the presence of potassium hydroxide. The molecular structure contains an approximately planar (r.m.s. deviation = 0.0204 Å) five-membered furanone ring and a six-membered menthyloxy ring adopting a chair conformation. The crystal packing is stabilized by intermolecular O–H···O and N– H···O hydrogen bonding.

Related literature

For applications of chiral 5-(L-menthyloxy)-2(5*H*)-furanones, see: Feringa & De Jong (1988); De Koning *et al.* (1997); Lattmann *et al.* (1999); He *et al.* (2006); Wang *et al.* (2006). For biologically active 4-amino-2(5*H*)-furanones, see: Kimura *et al.* (2000); Tanoury *et al.* (2008). For related compounds, see: Wang *et al.* (2006); Li *et al.* (2009). For the synthesis, see: Chen & Geng (1993).

 $M_r = 432.34$

Experimental

Crystal data C₁₉H₃₀BrNO₅ Tetragonal, $P4_{3}2_{1}2$ a = 10.5409 (9) Å c = 39.388 (7) Å V = 4376.4 (9) Å³ Z = 8

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.558, T_{\rm max} = 0.710$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ wR(F^2) = 0.085 S = 1.03 3859 reflections 241 parameters H-atom parameters constrained Mo $K\alpha$ radiation $\mu = 1.91 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.22 \times 0.18 \text{ mm}$

22304 measured reflections 3859 independent reflections 2726 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.065$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1526 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.001 \ (11)} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O5^{i}$ $O4 - H4 \cdots O2^{ii}$	0.86 0.82	2.28 1.83	3.047 (4) 2.615 (3)	149 160
		(11) . 3 .	1 1	

Symmetry codes: (i) y - 1, x + 1, -z; (ii) $-y + \frac{3}{2}, x + \frac{1}{2}, z - \frac{1}{4}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2542).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Q.-H. & Geng, Z. (1993). Acta Chim. Sin. 51, 622-624.
- De Koning, C. B., Hancock, R. D. & Van Otterlo, W. A. L. (1997). Tetrahedron Lett. 8, 1261–1264.
- Feringa, B. L. & De Jong, J. C. (1988). J. Org. Chem. 53, 125-127.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- He, L., Liu, Y.-M., Li, M. & Chen, Q.-H. (2006). Chem. J. Chin. Univ. 27, 464–467.
- Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). *Phytochemistry*, **53**, 829–831.
- Lattmann, E., Billington, D. C. & Langley, C. A. (1999). Drug Des. Discov. 16, 243–250.
- Li, Z., Song, X., Wang, Z. & Yang, K. (2009). Acta Cryst. E65, o1030.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tanoury, G. J., Chen, M.-Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.
- Wang, J.-P., Chen, X.-X. & Chen, Q.-H. (2006). Acta Chim. Sin. 64, 686-690.

Acta Cryst. (2009). E65, o1838 [doi:10.1107/S1600536809026129]

N-{4-Bromo-2-[(S)-menthyloxy]-5-oxo-2,5-dihydro-3-furyl}-L-valine

X.-M. Song, Z.-Y. Li, Z.-Y. Wang and J.-H. Fu

Comment

Chiral 5-(*l*-menthyloxy)-2(5*H*)-furanones have been utilized as key building blocks in the synthesis of supramolecules and important natural products since 1980's (Feringa & De Jong, 1988; De Koning *et al.*, 1997; Lattmann *et al.*, 1999), especially in asymmetric synthesis (He *et al.*, 2006; Wang *et al.*, 2006). At the same time, 4-amino-2(5*H*)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5*H*)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura *et al.*, 2000; Tanoury *et al.*, 2008). Attracted by versatile 4-amino-2(5*H*)-furanones, we synthesized the title compound with chiral synthon 3,4-dibromo-5-(*S*)-(*l*-menthyloxy)-2(5*H*)-furanone and L-valine in the present of potassium hydroxide *via* the tandem asymmetric Michael addition-elimination reaction. With 2(5*H*)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product and excellent ligand.

The structure of the title compound is illustrated in Fig. 1. The title compound which has five chiral centers (C2(*S*), C8(*S*), C9(*R*), C10(*S*), C14(*R*)) contains a five-membered furanone ring and a six-membered menthyloxy ring connected each other *via* C8—O3—C9 ether bond. The furanone ring is approximately planar, whereas the cyclohexane ring displays a chair conformation with three substituents occupying equatorial positions. The bond lengths and angles in the title compound are good agreement with the expected values (Wang *et al.*, 2006; Li *et al.*, 2009). In the crystal structure the molecules are linked by intermolecular hydrogen bonds (Table 1).

Experimental

The precursor 3,4-dibromo-5-(*S*)-(*l*-menthyloxy)-2(5*H*)-furanone was prepared according to the literature procedure (Chen *et al.*, 1993). An absolute ethanol solution (5 ml) of L-valine (4.5 mmol) and potassium hydroxide (5.8 mmol) was mixed with the dichloromethane solution (6 ml) of 3,4-dibromo-5-(*S*)-(*l*-menthyloxy)-2(5*H*)-furanone (3.0 mmol) under nitrogen atmosphere. The solution was stirred for 24 h at room temperature, and then the solvents were removed under reduced pressure. The solid residual was dissolved in dichloromethane, and pH of the solution was adjusted to 3 with 15% of aqueous HCl solution. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.9186 g (71.1%). Colorless crystals were obtained in acetone solution by slow evaporation.

Refinement

The carboxyl H and imino H atoms were placed in calculated positions with O—H = 0.82 and N—H = 0.86 Å, and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(O)$ and $1.2U_{eq}(N)$. Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angles were refined to fit the electron density, $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were positioned in calculated positions with C—H = 0.97 (methylene) or 0.98 Å (methine), and were refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$. Figures

Fig. 1. Displacement ellipsoid plot (30% probability level) of the title compound.

N-{4-Bromo-2-[(*S*)-menthyloxy]-5-oxo-2,5-dihydro-3-furyl}-L-valine

Crystal data	
C ₁₉ H ₃₀ BrNO ₅	Z = 8
$M_r = 432.34$	$F_{000} = 1808.0$
Tetragonal, P4 ₃ 2 ₁ 2	$D_{\rm x} = 1.312 \ {\rm Mg \ m}^{-3}$
Hall symbol: P 4nw 2abw	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.5409 (9) Å	Cell parameters from 3973 reflections
b = 10.5409 (9) Å	$\theta = 2.2 - 19.3^{\circ}$
c = 39.388 (7) Å	$\mu = 1.91 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 K
$\beta = 90^{\circ}$	Block, colourless
$\gamma = 90^{\circ}$	$0.30 \times 0.22 \times 0.18 \text{ mm}$
$V = 4376.4 (9) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	3859 independent reflections
Radiation source: fine-focus sealed tube	2726 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.065$
T = 293 K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -11 \rightarrow 12$
$T_{\min} = 0.558, T_{\max} = 0.710$	$k = -12 \rightarrow 9$
22304 measured reflections	$l = -40 \rightarrow 46$

Refinement

Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0221P)^{2} + 1.5196P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.43 \text{ e } \text{\AA}^{-3}$

3859 reflections $\Delta \rho_{min} = -0.40 \text{ e Å}^{-3}$ 241 parametersExtinction correction: nonePrimary atom site location: structure-invariant direct
methodsAbsolute structure: Flack (1983), 1526 Friedel pairsSecondary atom site location: difference Fourier mapFlack parameter: -0.001 (11)

Special details

Experimental. Data for (I): $[\alpha]^{20^{\circ}}_{D} = 63.39^{\circ}$ (c 0.437, CH₃CH₂OH); ¹H NMR (400 MHz, CDCl₃, TMS): 0.830 (3*H*, *d*, *J* = 6.8 Hz, CH₃), 0.897–0.933 (7*H*, *m*, CH, 2CH₃), 0.955–1.047 (8*H*, *m*, 2CH₃, CH₂), 1.316–1.451 (2*H*, *m*, 2CH), 1.610–1.708 (2*H*, *m*, CH₂), 2.102–2.347 (3*H*, *m*, CH₂, CH), 3.519–3.610 (1*H*, *m*, CH), 4.796 (1*H*, *s*, NH), 5.160–5.260 (1*H*, *m*, CH), 5.720 (1*H*, *s*, CH), 10.720 (1*H*, *s*, COOH); ESI-MS, *m/z* (%): Calcd for C₁₉H₃₁BrNO₅⁺([*M*+H]⁺): 434.14, Found: 434.16 (95.0).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.60721 (4)	1.06205 (6)	0.066070 (11)	0.0784 (2)
C1	0.3102 (4)	1.0150 (4)	-0.02299 (8)	0.0413 (9)
C2	0.3657 (3)	0.9857 (3)	0.01146 (8)	0.0421 (9)
H2	0.4503	1.0240	0.0126	0.051*
C3	0.3802 (4)	0.8413 (4)	0.01711 (9)	0.0599 (12)
Н3	0.3900	0.8288	0.0416	0.072*
C4	0.4988 (5)	0.7874 (5)	0.00061 (13)	0.105 (2)
H4A	0.5138	0.7032	0.0090	0.157*
H4B	0.5702	0.8404	0.0060	0.157*
H4C	0.4875	0.7845	-0.0236	0.157*
C5	0.3284 (3)	1.0733 (3)	0.06891 (8)	0.0367 (8)
C6	0.4445 (3)	1.0829 (3)	0.08348 (8)	0.0447 (9)
C7	0.4303 (4)	1.1255 (3)	0.11806 (8)	0.0457 (9)
C8	0.2303 (3)	1.1000 (4)	0.09637 (7)	0.0398 (8)
H8	0.1722	1.1677	0.0894	0.048*
С9	0.0390 (3)	1.0016 (3)	0.11682 (8)	0.0410 (9)
Н9	-0.0103	1.0597	0.1026	0.049*
C10	-0.0201 (4)	0.8704 (3)	0.11490 (10)	0.0522 (11)
H10	0.0288	0.8163	0.1303	0.063*
C11	-0.0114 (5)	0.8091 (4)	0.07965 (11)	0.0685 (13)
H11	0.0778	0.8134	0.0728	0.082*
C12	-0.1550 (4)	0.8779 (5)	0.12957 (12)	0.0746 (14)
H12A	-0.2064	0.9322	0.1152	0.090*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12B	-0.1925	0.7939	0.1294	0.090*
C13	-0.1566 (4)	0.9290 (5)	0.16525 (11)	0.0748 (14)
H13A	-0.1137	0.8694	0.1801	0.090*
H13B	-0.2438	0.9361	0.1728	0.090*
C14	-0.0928 (4)	1.0580 (4)	0.16822 (9)	0.0602 (11)
H14	-0.1425	1.1186	0.1548	0.072*
C15	0.0400 (3)	1.0516 (4)	0.15277 (9)	0.0504 (10)
H15A	0.0772	1.1358	0.1529	0.061*
H15B	0.0929	0.9972	0.1667	0.061*
C16	-0.0907 (5)	1.1053 (5)	0.20473 (10)	0.0854 (15)
H16A	-0.1760	1.1192	0.2124	0.128*
H16B	-0.0441	1.1835	0.2059	0.128*
H16C	-0.0506	1.0431	0.2189	0.128*
C17	0.2621 (5)	0.7689 (5)	0.00673 (12)	0.0897 (16)
H17A	0.2539	0.7706	-0.0175	0.134*
H17B	0.1889	0.8078	0.0169	0.134*
H17C	0.2687	0.6826	0.0143	0.134*
C18	-0.0868 (5)	0.8769 (5)	0.05239 (12)	0.0987 (18)
H18A	-0.0734	0.8358	0.0309	0.148*
H18B	-0.0595	0.9636	0.0510	0.148*
H18C	-0.1754	0.8743	0.0580	0.148*
C19	-0.0465 (6)	0.6681 (5)	0.08090 (16)	0.123 (2)
H19A	-0.1369	0.6595	0.0827	0.185*
H19B	-0.0070	0.6294	0.1003	0.185*
H19C	-0.0175	0.6271	0.0606	0.185*
N1	0.2878 (3)	1.0434 (3)	0.03785 (6)	0.0450 (7)
H1	0.2098	1.0594	0.0330	0.054*
01	0.3055 (3)	1.1382 (2)	0.12568 (5)	0.0479 (7)
O2	0.5122 (3)	1.1529 (3)	0.13854 (6)	0.0604 (8)
O3	0.1660 (2)	0.9901 (2)	0.10285 (6)	0.0429 (6)
O4	0.3943 (3)	0.9922 (4)	-0.04650 (6)	0.0843 (11)
H4	0.3630	1.0057	-0.0652	0.127*
O5	0.2048 (3)	1.0509 (3)	-0.02793 (6)	0.0596 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0465 (2)	0.1398 (5)	0.0488 (2)	0.0113 (3)	-0.0033 (2)	-0.0117 (3)
C1	0.047 (2)	0.051 (2)	0.0254 (19)	0.0110 (19)	-0.0007 (17)	-0.0051 (16)
C2	0.046 (2)	0.054 (3)	0.0255 (18)	0.0083 (18)	-0.0002 (15)	-0.0037 (16)
C3	0.093 (3)	0.058 (3)	0.029 (2)	0.023 (2)	-0.006 (2)	0.0020 (18)
C4	0.136 (5)	0.091 (4)	0.087 (4)	0.056 (4)	0.017 (4)	-0.007 (3)
C5	0.050 (2)	0.038 (2)	0.0221 (18)	0.0055 (18)	0.0006 (16)	0.0007 (15)
C6	0.052 (2)	0.057 (3)	0.0252 (17)	-0.002 (2)	-0.0005 (17)	0.0033 (16)
C7	0.061 (3)	0.050 (2)	0.0257 (18)	-0.010 (2)	-0.0028 (19)	0.0072 (17)
C8	0.051 (2)	0.044 (2)	0.0246 (18)	-0.001 (2)	0.0024 (16)	-0.0045 (18)
C9	0.042 (2)	0.047 (2)	0.034 (2)	0.004 (2)	0.0062 (17)	0.0082 (16)
C10	0.051 (3)	0.051 (3)	0.054 (2)	-0.004 (2)	-0.003 (2)	0.0120 (19)

C11	0.068 (3)	0.052 (3)	0.086 (4)	-0.004 (2)	-0.003 (3)	-0.018 (2)
C12	0.060 (3)	0.081 (3)	0.083 (4)	-0.016 (3)	0.007 (2)	0.014 (3)
C13	0.064 (3)	0.098 (4)	0.062 (3)	-0.004 (3)	0.018 (2)	0.019 (3)
C14	0.066 (3)	0.072 (3)	0.043 (2)	0.013 (3)	0.014 (2)	0.014 (2)
C15	0.058 (2)	0.058 (2)	0.035 (2)	0.000(2)	0.0067 (18)	0.0044 (18)
C16	0.108 (4)	0.099 (4)	0.049 (3)	0.016 (4)	0.030 (3)	0.006 (3)
C17	0.132 (5)	0.068 (3)	0.070 (4)	-0.016 (3)	-0.010 (3)	-0.004 (3)
C18	0.121 (5)	0.114 (4)	0.061 (3)	0.016 (4)	-0.021 (3)	-0.026 (3)
C19	0.129 (5)	0.064 (3)	0.177 (6)	-0.020 (4)	-0.007 (4)	-0.038 (4)
N1	0.0439 (17)	0.066 (2)	0.0249 (15)	0.0106 (16)	-0.0028 (13)	-0.0058 (15)
01	0.0584 (18)	0.0629 (19)	0.0225 (12)	-0.0081 (13)	0.0048 (12)	-0.0114 (12)
O2	0.070 (2)	0.082 (2)	0.0288 (14)	-0.0203 (15)	-0.0116 (14)	-0.0017 (13)
O3	0.0499 (15)	0.0424 (16)	0.0364 (14)	-0.0019 (13)	0.0063 (12)	-0.0002 (11)
O4	0.0685 (19)	0.158 (3)	0.0264 (14)	0.041 (2)	0.0074 (14)	0.0028 (16)
05	0.0627 (19)	0.083 (2)	0.0334 (15)	0.0299 (17)	-0.0063 (12)	-0.0061 (14)

Geometric parameters (Å, °)

Br1—C6	1.861 (4)	C11—C18	1.515 (6)
C1—O5	1.190 (4)	C11—C19	1.532 (6)
C1—O4	1.304 (4)	C11—H11	0.9800
C1—C2	1.509 (4)	C12—C13	1.505 (6)
C2—N1	1.458 (4)	C12—H12A	0.9700
C2—C3	1.546 (5)	C12—H12B	0.9700
С2—Н2	0.9800	C13—C14	1.522 (6)
C3—C17	1.516 (6)	C13—H13A	0.9700
C3—C4	1.519 (6)	С13—Н13В	0.9700
С3—Н3	0.9800	C14—C16	1.522 (5)
C4—H4A	0.9600	C14—C15	1.528 (5)
C4—H4B	0.9600	C14—H14	0.9800
C4—H4C	0.9600	C15—H15A	0.9700
C5—N1	1.334 (4)	C15—H15B	0.9700
C5—C6	1.355 (5)	C16—H16A	0.9600
C5—C8	1.523 (4)	C16—H16B	0.9600
C6—C7	1.442 (4)	C16—H16C	0.9600
С7—О2	1.217 (4)	С17—Н17А	0.9600
C7—O1	1.356 (4)	С17—Н17В	0.9600
C8—O3	1.366 (4)	C17—H17C	0.9600
C8—O1	1.457 (4)	C18—H18A	0.9600
С8—Н8	0.9800	C18—H18B	0.9600
С9—ОЗ	1.452 (4)	C18—H18C	0.9600
C9—C15	1.511 (5)	C19—H19A	0.9600
C9—C10	1.518 (5)	С19—Н19В	0.9600
С9—Н9	0.9800	С19—Н19С	0.9600
C10-C11	1.535 (5)	N1—H1	0.8600
C10-C12	1.537 (6)	O4—H4	0.8200
C10—H10	0.9800		
O5—C1—O4	125.2 (3)	C13—C12—C10	112.3 (4)
O5—C1—C2	125.0 (3)	C13—C12—H12A	109.1

O4—C1—C2	109.7 (3)	C10-C12-H12A	109.1
N1—C2—C1	109.7 (3)	C13—C12—H12B	109.1
N1—C2—C3	111.4 (3)	C10-C12-H12B	109.1
C1—C2—C3	111.7 (3)	H12A—C12—H12B	107.9
N1—C2—H2	108.0	C12—C13—C14	112.7 (3)
C1—C2—H2	108.0	С12—С13—Н13А	109.0
С3—С2—Н2	108.0	С14—С13—Н13А	109.0
C17—C3—C4	111.9 (4)	C12—C13—H13B	109.0
C17—C3—C2	112.0 (4)	C14—C13—H13B	109.0
C4—C3—C2	112.8 (4)	H13A—C13—H13B	107.8
С17—С3—Н3	106.5	C13—C14—C16	111.8 (3)
С4—С3—Н3	106.5	C13—C14—C15	109.5 (3)
С2—С3—Н3	106.5	C16—C14—C15	112.2 (4)
C3—C4—H4A	109.5	C13—C14—H14	107.7
C3—C4—H4B	109.5	C16—C14—H14	107.7
H4A—C4—H4B	109.5	C15—C14—H14	107.7
C3—C4—H4C	109.5	C9—C15—C14	112.5 (3)
Н4А—С4—Н4С	109.5	С9—С15—Н15А	109.1
Н4В—С4—Н4С	109.5	C14—C15—H15A	109.1
N1—C5—C6	134.1 (3)	С9—С15—Н15В	109.1
N1—C5—C8	118.5 (3)	C14—C15—H15B	109.1
C6—C5—C8	107.4 (3)	H15A—C15—H15B	107.8
C5—C6—C7	109.3 (3)	C14—C16—H16A	109.5
C5—C6—Br1	131.9 (2)	C14—C16—H16B	109.5
C7—C6—Br1	118.7 (3)	H16A—C16—H16B	109.5
O2—C7—O1	121.2 (3)	C14—C16—H16C	109.5
O2—C7—C6	128.8 (4)	H16A—C16—H16C	109.5
O1—C7—C6	109.9 (3)	H16B—C16—H16C	109.5
03—C8—O1	110.9 (3)	С3—С17—Н17А	109.5
O3—C8—C5	108.3 (3)	С3—С17—Н17В	109.5
O1—C8—C5	104.1 (3)	H17A—C17—H17B	109.5
O3—C8—H8	111.1	С3—С17—Н17С	109.5
O1—C8—H8	111.1	H17A—C17—H17C	109.5
С5—С8—Н8	111.1	H17B—C17—H17C	109.5
O3—C9—C15	112.2 (3)	C11—C18—H18A	109.5
O3—C9—C10	106.5 (3)	C11—C18—H18B	109.5
C15—C9—C10	111.6 (3)	H18A—C18—H18B	109.5
О3—С9—Н9	108.9	C11—C18—H18C	109.5
С15—С9—Н9	108.9	H18A—C18—H18C	109.5
С10—С9—Н9	108.9	H18B—C18—H18C	109.5
C9—C10—C11	113.9 (3)	С11—С19—Н19А	109.5
C9—C10—C12	108.3 (3)	С11—С19—Н19В	109.5
C11—C10—C12	114.6 (4)	H19A—C19—H19B	109.5
С9—С10—Н10	106.5	С11—С19—Н19С	109.5
C11—C10—H10	106.5	H19A—C19—H19C	109.5
C12—C10—H10	106.5	H19B—C19—H19C	109.5
C18—C11—C19	110.7 (4)	C5—N1—C2	124.9 (3)
C18—C11—C10	114.3 (4)	C5—N1—H1	117.6
C19—C11—C10	111.4 (4)	C2—N1—H1	117.6

C18—C11—H11	106.6	C7—O1—C8	108.9 (2)
С19—С11—Н11	106.6	C8—O3—C9	117.2 (2)
C10—C11—H11	106.6	C1—O4—H4	109.5
O5-C1-C2-N1	-17.4 (5)	C12-C10-C11-C18	60.0 (5)
O4—C1—C2—N1	164.1 (3)	C9—C10—C11—C19	168.0 (4)
O5—C1—C2—C3	106.6 (4)	C12-C10-C11-C19	-66.5 (5)
O4—C1—C2—C3	-71.9 (4)	C9—C10—C12—C13	-56.3 (5)
N1—C2—C3—C17	76.8 (4)	C11-C10-C12-C13	175.3 (4)
C1—C2—C3—C17	-46.2 (4)	C10-C12-C13-C14	55.7 (5)
N1—C2—C3—C4	-155.9 (3)	C12-C13-C14-C16	-177.6 (4)
C1—C2—C3—C4	81.1 (4)	C12-C13-C14-C15	-52.6 (5)
N1C5C7	177.2 (4)	O3—C9—C15—C14	-177.3 (3)
C8—C5—C6—C7	-5.1 (4)	C10-C9-C15-C14	-57.9 (4)
N1	1.8 (6)	C13—C14—C15—C9	53.7 (4)
C8—C5—C6—Br1	179.5 (3)	C16-C14-C15-C9	178.5 (3)
C5—C6—C7—O2	-174.9 (4)	C6—C5—N1—C2	13.4 (6)
Br1—C6—C7—O2	1.2 (5)	C8—C5—N1—C2	-164.1 (3)
C5—C6—C7—O1	2.2 (4)	C1—C2—N1—C5	-156.4 (3)
Br1—C6—C7—O1	178.3 (2)	C3—C2—N1—C5	79.5 (4)
N1C5C8O3	66.1 (4)	O2—C7—O1—C8	179.3 (3)
C6—C5—C8—O3	-112.0 (3)	C6—C7—O1—C8	1.9 (4)
N1-C5-C8-O1	-175.8 (3)	O3—C8—O1—C7	111.4 (3)
C6—C5—C8—O1	6.1 (4)	C5—C8—O1—C7	-4.8 (4)
O3—C9—C10—C11	-51.4 (4)	O1—C8—O3—C9	91.0 (3)
C15-C9-C10-C11	-174.1 (3)	С5—С8—О3—С9	-155.3 (3)
O3—C9—C10—C12	179.8 (3)	C15—C9—O3—C8	-68.8 (3)
C15—C9—C10—C12	57.1 (4)	С10—С9—О3—С8	168.9 (3)
C9—C10—C11—C18	-65.5 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		
N1—H1···O5 ⁱ	0.86	2.28	3.047 (4)	149		
O4—H4···O2 ⁱⁱ	0.82	1.83	2.615 (3)	160		
Symmetry codes: (i) $y-1$, $x+1$, $-z$; (ii) $-y+3/2$, $x+1/2$, $z-1/4$.						

Fig. 1